- 2. A second, more precise, visual check begins with graphing $y_1 = x^3 + 2$ and $y_2 = \sqrt[3]{x-2}$ using a squared viewing window. Then press **PRAW** (8) VARS () (1) (1) (ENTER to select the DrawInv option of the DRAW menu and graph the inverse. The resulting graph should coincide with the graph of y_2 .
- 3. For a third check, note that if y_2 is the inverse of y_1 , then $(y_2 \circ y_1)(x) = x$ and $(y_1 \circ y_2)(x) = x$. Enter $y_3 = y_2(y_1(x))$ and $y_4 = y_1(y_2(x))$, and form a table to compare x, y_3 , and y_4 . Note that for the values shown, $y_3 = y_4 = x$.

Your Turn

- 1. Enter $y_1 = 2x + 1$ and $y_2 = x/2 1$. These are not inverse functions, as the following three activities will demonstrate.
- 2. Graph y_1 and y_2 in a squared viewing window. These should not appear to be reflections across the line y = x.
- 3. From the home screen, press (DRAW) (8) VARS () (1) (1) ENTER. The graph drawn should be different from the graph of y_2 .
- 4. Enter $y_3 = y_2(y_1(x))$ and $y_4 = y_1(y_2(x))$ and form a table. Compare x, y_3 , and y_4 . The columns should *not* be the same.

Exercise Set

FOR EXTRA HELP

-

Sourcept Reinforcement Classify each of the

following statements as either true or false.

- **1.** The composition of two functions f and g is written $f \circ g$. True
- **2.** The notation $(f \circ g)(x)$ means f(g(x)). True
- **3.** If $f(x) = x^2$ and g(x) = x + 3, then $(g \circ f)(x) = (x + 3)^2$. False
- 4. For any function h, there is only one way to decompose the function as $h = f \circ g$. False
- 5. The function f is one-to-one if f(1) = 1. False
- 6. The -1 in f^{-1} is an exponent. False
- → Answers to Exercises 9–12 are on p. IA-21.

- **7.** The function f is the inverse of f^{-1} . True
- 8. If g and h are inverses of each other, then $(g \circ h)(x) = x$. True

For each pair of functions, find (a) $(f \circ g)(1)$; **(b)** $(g \circ f)(1)$; **(c)** $(f \circ g)(x)$; and **(d)** $(g \circ f)(x)$. 9. $f(x) = x^2 + 1$; g(x) = x - 3 .

- **10.** f(x) = x + 4; $g(x) = x^2 5$.
- **11.** f(x) = 5x + 1; $g(x) = 2x^2 7$.
- **12.** $f(x) = 3x^2 + 4$; g(x) = 4x 1

694

13. f(x) = x + 7; $g(x) = 1/x^2$ **14.** $f(x) = 1/x^2$; g(x) = x + 2 **15.** $f(x) = \sqrt{x}$; g(x) = x + 3 **16.** f(x) = 10 - x; $g(x) = \sqrt{x}$ **17.** $f(x) = \sqrt{4x}$; g(x) = 1/x **18.** $f(x) = \sqrt{x + 3}$; g(x) = 13/x **19.** $f(x) = x^2 + 4$; $g(x) = \sqrt{x - 1}$ **20.** $f(x) = x^2 + 8$; $g(x) = \sqrt{x + 17}$ **21.** $f(x) = x^2 + 8$; $g(x) = \sqrt{x + 17}$

Use the following table to find each value, if possible.

Use the table below to find each value, if possible.

x	f(x)	g(x)
1	0	1
2	3	5
3	2	8
4	6	.5
5	4	1

27. $(f \circ g)(2)$ 4**28.** $(g \circ f)(4)$ **29.** f(g(3)) Not defined**30.** g(f(5)) 5

Not defined **28.** $(g \circ f)(4)$

Find f(x) and g(x) such that $h(x) = (f \circ g)(x)$.

Answers may vary.

31. $h(x) = (3x - 5)^4$:	32. $h(x) = (2x + 7)^3$.
33. $h(x) = \sqrt{2x + 7}$.	34. $h(x) = \sqrt[3]{4x-5}$
35. $h(x) = \frac{2}{x-3}$.	36. $h(x) = \frac{3}{x} + 4$:
37. $h(x) = \frac{1}{\sqrt{7x+2}}$.	38. $h(x) = \sqrt{x-7} - 3$
39. $h(x) = \frac{1}{\sqrt{3x}} + \sqrt{3x}$	40. $h(x) = \frac{1}{\sqrt{2x}} - \sqrt{2x}$

Determine whether each function is one-to-one.

For each function, (a) determine whether it is one-to-one and (b) if it is one-to-one, find a formula for the inverse.

(49. $f(x) = x + 4$ a) Yes; (b) $f^{-1}(x) = x - 4$ (a) 51. $f(x) = 2x$ (a) Yes; (b) $f^{-1}(x) = x/2$ 53. $g(x) = 3x - 1$	50. $f(x) = x + 2$) Yes; (b) $f^{-1}(x) = x - 2$ 52. $f(x) = 3x$ (a) Yes; (b) $f^{-1}(x) = x/3$ 54. $g(x) = 2x - 5$
(a) Y	55. $f(x) = \frac{1}{2}x + 1$ (a) 57. $g(x) = x^2 + 5$ (a) No	56. $f(x) = \frac{1}{3}x + 2$ Yes; (b) $f^{-1}(x) = 3x - 6$ 58. $g(x) = x^2 - 4$
	59. $h(x) = -10 - x$.	60. $h(x) = 7 - x$
Aha!	61. $f(x) = \frac{1}{x}$:	62. $f(x) = \frac{3}{x}$.
	63. $G(x) = 4$ (a) No	64. $H(x) = 2$ (a) No
	65. $f(x) = \frac{2x+1}{3}$.	66. $f(x) = \frac{3x+2}{5}$.
	67. $f(x) = x^3 - 5$:	68. $f(x) = x^3 + 7$.
	69. $g(x) = (x - 2)^3$.	70. $g(x) = (x + 7)^3$
	71. $f(x) = \sqrt{x}$:	72. $f(x) = \sqrt{x-1}$.

Graph each function and its inverse using the same set of axes.

 73. $f(x) = \frac{2}{3}x + 4$.
 74. $g(x) = \frac{1}{4}x + 2$.

 75. $f(x) = x^3 + 1$.
 76. $f(x) = x^3 - 1$.

 77. $g(x) = \frac{1}{2}x^3$.
 78. $g(x) = \frac{1}{3}x^3$.

 79. $F(x) = -\sqrt{x}$.
 80. $f(x) = \sqrt{x}$.

 81. $f(x) = -x^2, x \ge 0$.

 82. $f(x) = x^2 - 1, x \le 0$.

⊡ Answers to Exercises 13–20, 31–40, 53, 54, 59–62, and 65–82 are on pp. IA-21 and IA-22.

696 CHAPTER 9 Exponential Functions and Logarithmic Functions

83. Let $f(x) = \sqrt[3]{x-4}$. Use composition to show that $f^{-1}(x) = x^3 + 4$.

84. Let f(x) = 3/(x + 2). Use composition to show that $f^{-1}(x) = \frac{3}{x} - 2$.

85. Let f(x) = (1 - x)/x. Use composition to show that

$$f^{-1}(x) = \frac{1}{x+1}.$$

86. Let $f(x) = x^3 - 5$. Use composition to show that $f^{-1}(x) = \sqrt[3]{x+5}$.

Use a graphing calculator to help determine whether or not the given pairs of functions are inverses of each other.

87.
$$f(x) = 0.75x^2 + 2; g(x) = \sqrt{\frac{4(x-2)}{3}}$$
 No
88. $f(x) = 1.4x^3 + 3.2; g(x) = \sqrt[3]{\frac{x-3.2}{1.4}}$ Yes
89. $f(x) = \sqrt{2.5x + 9.25};$
 $g(x) = 0.4x^2 - 3.7, x \ge 0$ Yes

90.
$$f(x) = 0.8x^{1/2} + 5.23;$$

 $g(x) = 1.25(x^2 - 5.23), x \ge 0$ No

In Exercises 91 and 92, match the graph of each function in Column A with the graph of its inverse in Column B.

93. Dress Sizes in the United States and France. A size-6 dress in the United States is size 38 in France. A function that converts dress sizes in the United States to those in France is

$$f(x) = x + 32. \tag{40.42.46.50}$$

- a) Find the dress sizes in France that correspond to sizes 8, 10, 14, and 18 in the United States.
- **b**) Determine whether this function has an inverse that is a function. If so, find a formula for the inverse. Yes; $f^{-1}(x) = x 32$
- c) Use the inverse function to find dress sizes in the United States that correspond to sizes 40, 42, 46, and 50 in France. 8, 10, 14, 18

94. *Dress Sizes in the United States and Italy.* A size-6 dress in the United States is size 36 in Italy. A function that converts dress sizes in the United States to those in Italy is

$$f(x) = 2(x+12).$$

- 40, 44, 52, 60 a) Find the dress sizes in Italy that correspond to sizes 8, 10, 14, and 18 in the United States.
- b) Determine whether this function has an inverse that is a function. If so, find a formula for the inverse. Yes; $f^{-1}(x) = (x/2) 12$
- c) Use the inverse function to find dress sizes in the United States that correspond to sizes 40, 44, 52, and 60 in Italy. 8, 10, 14, 18
- 95. Is there a one-to-one relationship between items in a store and the price of each of those items? Why or why not?
- 96. Mathematicians usually try to select "logical" words when forming definitions. Does the term "one-to-one" seem logical? Why or why not?

SKILL REVIEW

To prepare for Section 9.2, review simplifying exponential expressions and graphing equations (Sections 1.4, 1.5, and 7.2).

Simplify.

97. 2^{-3} [1.4] $\frac{1}{8}$

98. $5^{(1-3)}$ [1.4] $\frac{1}{25}$

99. 4^{5/2} [7.2] 32

100. 3^{7/10} [7.2] Approximately 2.1577

Graph. [1.5]

101. $v = x^3$.

SYNTHESIS

103. The function $V(t) = 750(1.2)^t$ is used to predict the value, V(t), of a certain rare stamp t years from 2005. Do not calculate $V^{-1}(t)$, but explain how V^{-1} could be used.

102. $x = y^3$.

104. An organization determines that the cost per person of chartering a bus is given by the function

$$C(x) = \frac{100 + 5x}{x},$$

where x is the number of people in the group and C(x) is in dollars. Determine $C^{-1}(x)$ and explain how this inverse function could be used.

For Exercises 105 and 106, graph the inverse of f.

⊡ Answers to Exercises 101, 102, 105, 106, 110, 111, and 116 are on pp. IA-22 and IA-23.

- **107.** Dress Sizes in France and Italy. Use the information in Exercises 93 and 94 to find a function for the French dress size that corresponds to a size x dress in Italy. $g(x) = \frac{x}{2} + 20$
- **108.** Dress Sizes in Italy and France. Use the information in Exercises 93 and 94 to find a function for the Italian dress size that corresponds to a size x dress in France. h(x) = 2(x 20)
- № 109. What relationship exists between the answers to Exercises 107 and 108? Explain how you determined this.
 - **110.** Show that function composition is associative by showing that $((f \circ g) \circ h)(x) = (f \circ (g \circ h))(x)$.
 - **111.** Show that if $h(x) = (f \circ g)(x)$, then $h^{-1}(x) = (g^{-1} \circ f^{-1})(x)$. (*Hint*: Use Exercise 110.) \Box
 - **112.** Match each function in Column A with its inverse from Column B.

C 1 A

Column A	Column B
(1) $y = 5x^3 + 10$ C	A. $y = \frac{\sqrt[3]{x} - 10}{5}$
(2) $y = (5x + 10)^3$ A	B. $y = \sqrt[3]{\frac{x}{5}} - 10$
(3) $y = 5(x + 10)^3$ B	C. $y = \sqrt[3]{\frac{x - 10}{5}}$
(4) $y = (5x)^3 + 10$ D	D. $y = \frac{\sqrt[3]{x-10}}{5}$

113. Examine the following table. Is it possible that f and g could be inverses of each other? Why or why not?

x	f(x)	g(x)
6	6	6
7	· 6.5	8
8	7	10
9	7.5	12
10	8	14
11	8.5	16
12	9	18

- 114. Assume in Exercise 113 that f and g are both linear functions. Find equations for f(x) and g(x) Are f and g inverses of each other? $f(x) = \frac{1}{2}x + 3$; g(x) = 2x 6; yes
- 115. Let c(w) represent the cost of mailing a package that weighs w pounds. Let f(n) represent the weight, in pounds, of n copies of a certain book. Explain what $(c \circ f)(n)$ represents.
- **116.** Let g(a) represent the number of gallons of sealant needed to seal a bamboo floor with area *a*. Let c(s)represent the cost of *s* gallons of sealant. Which composition makes sense: $(c \circ g)(a)$ or $(g \circ c)(s)$? What does it represent?